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ABSTRACT

We present a new method for inferring the gravitational potential of the Galactic disk, using the time-varying structure of a phase-
space spiral in the (z,w)-plane (where z and w represent vertical position and vertical velocity). Our method of inference extracts
information from the shape of the spiral, and disregards the bulk density distribution that is usually used to perform dynamical mass
measurements. In this manner, it is complementary to traditional methods that are based on the assumption of a steady state. Our
method consists of fitting an analytical model for the phase-space spiral to data, where the spiral is seen as a perturbation of the stellar
number density in the (z,w)-plane. We tested our method on one-dimensional simulations, which were initiated in a steady state and
then perturbed by an external force similar to that of a passing satellite. We were able to retrieve the true gravitational potentials
of the simulations with high accuracy. The gravitational potential at 400–500 parsec distance from the disk mid-plane was inferred
with an error of only a few percent. This is a first paper of a series in which we plan to test and refine our method on more complex
simulations, as well as apply our method to Gaia data.
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1. Introduction

Determining the gravitational potential of the Milky Way is im-
portant for constraining its composition, history, and dynamical
properties (Dehnen & Binney 1998; Klypin et al. 2002; Widrow
et al. 2008; Weber & de Boer 2010; McMillan 2011; Kafle et al.
2014; Cole & Binney 2017; McMillan 2017; Nitschai et al. 2020;
Cautun et al. 2020; Li et al. 2020). Weighing the Galaxy is es-
pecially important for understanding dark matter and its spatial
distribution. The local density of dark matter influences the sen-
sitivity of direct and indirect detection experiments (Jungman
et al. 1996; Klasen et al. 2015), and could potentially depend on
dark substructures which would inform us of its particle nature
(Read et al. 2008; Purcell et al. 2009; Fan et al. 2013; Ruchti
et al. 2014).

The first dynamical mass measurements of the Galactic disk
were carried out roughly a century ago, by Kapteyn (1922), Jeans
(1922), and Oort (1932). They were able to obtain remarkably
accurate estimates of the total matter density in the solar neigh-
bourhood, under the assumption that the local population of stars
was in a stable configuration. Modern methods use the same ba-
sic principles—by assuming a steady state, the stellar number
density distribution and velocity distribution are interrelated via
the gravitational potential. With the advent of the Gaia mission
(Gaia Collaboration et al. 2016), which recently published an
early instalment of its third data release (EDR3, Gaia Collabo-
ration et al. 2020a), the stars of our Galaxy are observed with
greater depth and precision than ever before.

One great discovery directly enabled by the Gaia survey is
that of the now famous phase-space spiral (Antoja et al. 2018).
This spiral is visible in the plane of vertical position and vertical
velocity (where vertical refers to the direction perpendicular to
the Galactic disk), either as a function of the median velocity in
the azimuthal direction, or as a perturbation to the stellar num-
ber density. In terms of the stellar number density in the plane
of vertical position and velocity, the phase-space spiral can be
seen by eye only at higher vertical energies; however, Laporte
et al. (2019) has demonstrated that the spiral, when plotted as a
relative over- and under-density with respect to a bulk density
component, is visible also at lower vertical energies.

The phase-space spiral is a clear example that the Galaxy is
actually not in a steady state; other examples are ridges in stellar
number count as a function of azimuthal velocity and Galacto-
centric radius (Antoja et al. 2018), and pre-Gaia studies of the
solar neighbourhood (Minchev et al. 2009; Widrow et al. 2012)
and the Milky Way disk-halo interface (Newberg et al. 2002;
Rocha-Pinto et al. 2003; Xu et al. 2015; Price-Whelan et al.
2015; Bergemann et al. 2018). It is yet an open question to what
extent these structures can bias dynamical mass measurements
(see for example Haines et al. 2019 and Salomon et al. 2020).
However, because Gaia is precise enough to resolve and identify
such features, it seems reasonable that we have already entered
an era where time-varying dynamical structures induce signif-
icant systematic biases that in many cases surpass the strictly
statistical uncertainty of traditional methods. While most local
mass measurements quote rather small statistical uncertainties,
there are significant discrepancies between studies, for example
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depending on the choice of method, and sometimes even within
studies, for example depending on the choice of stellar tracer
population (see reviews by Read 2014 and de Salas & Wid-
mark 2020 on recent determinations of the local dark matter den-
sity). Furthermore, in a study by Widmark et al. (2020), where
they measure the total matter density in sub-regions of the so-
lar neighbourhood, they argue that their inferred matter density
distributions can only be explained by biases induced by time-
varying dynamics.

This work is an attempt to move beyond the traditional meth-
ods that are based on the assumption of a steady state. We
demonstrate that the gravitational potential can be inferred from
the shape of a phase-space spiral in the plane of vertical position
and vertical velocity. Our method, as formulated in this paper,
uses the relative stellar number density perturbation of the spi-
ral with respect to a smooth background component. This back-
ground component, which we refer to as the bulk, is the quan-
tity that is traditionally used to perform dynamical mass mea-
surement. Our method of inference extracts information only
from the shape of the spiral, while the bulk density distribution
is disregarded and does not influence, nor is influenced by, the
inferred gravitational potential. We tested our method on one-
dimensional simulations, which were initiated in a steady state
and then perturbed by applying an external force similar to that
of a passing satellite. The gravitational potential was inferred
with high accuracy, illustrating that time-varying structures are
not necessarily obstacles to be overcome, but can be regarded as
valuable assets containing useful information.

This article is structured in the following way. In Sect. 2, we
describe our analytical model for the phase-space spiral, as well
as our statistical model of inference. In Sect. 3, we present our
simulation on which we test our model of inference. The results
of those tests are found in Sect 4. In Sects. 5 and 6, we discuss
and conclude.

2. Analytical model of the spiral

In this work, we considered a simple analytical model for the
Galactic disk phase-space spiral. This analytical model was
based on the following simplifying assumptions:

– We reduced the problem to a single spatial dimension and
considered motion only in the direction perpendicular to the
Galactic plane.

– The phase-space spiral was modelled as a first order pertur-
bation of the stellar phase-space density distribution, inhab-
iting a stationary gravitational potential. As such, our analyt-
ical model neglects the self-gravity of the spiral structure.

– The initial perturbation is not in the shape of a spiral to begin
with; it is modelled as a function that depends on, and is sep-
arable with respect to, the total vertical energy and angle of
vertical oscillation (see Sect. 2.1 below for the mathematical
definition of these quantities).

The actual phase-space spiral of the Milky Way is of course not
subject to these assumptions. Rather, it inhabits the Galaxy’s
three-dimensional potential and six-dimensional phase-space
structure, it is subject to self-gravity, and the initial perturbation
could have a more complex structure (the Galactic disk might
be subject to several or even continuous spiral-producing pertur-
bations, see for example Hunt et al. 2018; Binney & Schönrich
2018; Laporte et al. 2019; Khoperskov et al. 2019). For a discus-
sion on the validity of these assumption, see Sect. 5.

2.1. Coordinate system and stellar kinematics

In order to describe the analytical model for a phase-space spiral,
we begin by making the following definitions.

The vertical position, written z, also referred to as height, is
defined in relation to the disk’s mid-plane, such that the grav-
itational potential, written Φ(z), has a zero-valued minimum at
z = 0 pc. The vertical velocity, written w, is defined in relation
to the disk’s rest frame. Hence, a star’s vertical energy1 is equal
to

Ez = Φ(z) +
w2

2
. (1)

Given a fixed value for Ez, the absolute value of w is fully deter-
mined by the absolute value of z, and vice versa.

In reality, stars are not observed from the rest-frame of the
disk itself, but rather from the vantage point of the solar system.
The disk frame coordinates (z, w) and solar frame coordinates
(Z, W) have the relation
z = Z + Z�,

w = W + W�, (2)

where Z� is the height of the Sun with respect to the disk’s mid-
plane, and W� is the vertical velocity of the Sun in the disk’s
rest-frame.

A star with a certain vertical energy will reach a maximum
height zmax, which fulfils that

Ez = Φ(zmax). (3)

The star’s vertical oscillation has a total time period of

P(Ez) =

∮
dz
w

= 4
∫ zmax

0

dz√
2[Ez − Φ(z)]

, (4)

where the factor 4 on the right hand side is due to the integral
only covering one of four quadrants of the oscillation in the
(z,w)-plane.

We define the starting point of the vertical oscillation as
passing through the disk’s mid-plane with a positive vertical
velocity (z = 0, w > 0). Finally, we define an angle of os-
cillation (ϕ) as the fraction of elapsed time relative to the to-
tal period, where a complete period amounts to 2π, such that
[z,w](ϕ) = [z,w](ϕ+ 2πn) where n is an integer. The angle, here
chosen to lie in the range [0, 2π), can be calculated according to

ϕ(z,w) =



2πP−1
∫ |z|

0

dz′√
2[Ez − Φ(z′)]

if z ≥ 0 and w ≥ 0,

π − 2πP−1
∫ |z|

0

dz′√
2[Ez − Φ(z′)]

if z ≥ 0 and w < 0,

π + 2πP−1
∫ |z|

0

dz′√
2[Ez − Φ(z′)]

if z < 0 and w < 0,

2π − 2πP−1
∫ |z|

0

dz′√
2[Ez − Φ(z′)]

if z < 0 and w ≥ 0,

(5)

where these four cases correspond to the four quadrants of the
(z,w)-plane, and it is implicit that Ez is given by Eq (1) and P by
Eq. (4).2

1 This quantity is, strictly speaking, in units of vertical energy per
mass, but is referred to as vertical energy throughout this article.
2 In Eq. (5), the integral is written with its upper bound in absolute
value (|z|) in order to make the expression more explicit in terms of its
sign (making the integral itself a positive quantity). This formulation is
contingent on the potential being mirror symmetric with respect to the
Galactic plane.
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2.2. Spiral winding

In our analytical model, the initial perturbation was assumed to
be an over-density along some initial angle (ϕ̃0). For example,
the over-density could lie along a vertical or horizontal semi-axis
in the (z,w)-plane.

The angle of a star vertically oscillating in the disk evolves
with time according to

ϕ̃(t, Ez) = ϕ̃0 + 2π
t

P(Ez)
, (6)

where the period P(Ez) has an implicit dependence on Φ.
Because the initial over-density is assumed to be described

by a single initial angle, which we write ϕ̃0, this equation also de-
scribes the winding of the phase-space spiral and how it evolves
with time. The winding of the spiral arises from variations in the
period with respect to Ez. If the gravitational potential of the disk
was harmonic, such that the period was invariant with respect to
Ez, no winding would occur. However, the matter density of the
Galactic disk decreases with distance from the mid-plane, such
that the period of oscillation increases with Ez. As a result, an
initial perturbation will wind into a spiral that is dragging if con-
sidered from the inside out—in other words, winding in the op-
posite direction of the stars’ rotation in the (z,w)-plane, which
evolve clockwise.

2.3. Spirals represented as line graphs

The shape of the phase-space spiral in the (z,w)-plane is deter-
mined by: the initial angle, ϕ̃0; the time since the initial pertur-
bation, t; and the gravitational potential, Φ(z). Here, we consider
a simplistic case where the spiral is a one-dimensional curve in
the (z,w)-plane. This curve can be written in terms of its angle
as a function of vertical energy, ϕ̃(Ez), which is a smooth and
strictly decreasing function. The angle can in turn be translated
into phase-space coordinates, z[ϕ̃(Ez)] and w[ϕ̃(Ez)], according
to the equations presented in Sects. 2.1 and 2.2.

An example of such a spiral is presented in Fig. 1. For this
spiral, the time since the perturbation is t = 600 Myr, the initial
angle is chosen such that the spiral cuts the z-axis at 500 pc, and
the gravitational potential has the following form,

Φ(z) = 4πG
{

0.06 M�pc−3

(200 pc)2 log
[

cosh
(

z
200 pc

)]
+

0.03 M�pc−3

(400 pc)2 log
[

cosh
(

z
400 pc

)]}
. (7)

Given the one-dimensional Poisson equation,

∂2Φ(z)
∂z2 = 4πGρ(z), (8)

the gravitational potential corresponds to a matter density distri-
bution that is equal to

ρ(z) =
0.06 M�pc−3

cosh2
(

z
200 pc

) +
0.03 M�pc−3

cosh2
(

z
400 pc

) . (9)

This matter density profile, as well as other matter density pro-
files used in this work, has the same general characteristics as
the total matter density of the Galactic disk in the solar neigh-
bourhood (in terms of total mid-plane density, scale height, and
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Fig. 1. A phase-space spiral represented as a line graph, shown in solid
blue. Two points, labelled A and B, are connected to the origin point via
dashed black lines. The points A and B are both associated with a total
vertical energy: Ez,A = w2/2 is given by the vertical velocity where the
spiral passes through the Galactic mid-plane; Ez,B = Φ(z) is given by
gravitational potential at a point of the spiral with zero velocity. In the
limit of high winding, the difference Ez,A − Ez,B would approach zero
from above.

shape; see for example McKee et al. 2015 and Schutz et al.
2018).

Any point on the spiral in Fig. 1 is associated with a specific
vertical energy. We have highlighted points A and B, for which
the vertical energy is taking the form of either purely kinematic
or potential energy:

Ez,A =
w2

2
=

(31.5 km s−1)2

2
= 496 km2 s−2,

Ez,B = ∆Φ = Φ(500 pc) = 400 km2 s−2. (10)

In the limit of high winding, the difference in energy between
these two points will be small, allowing us to make measure-
ments of the disk’s mass knowing only of the (z,w) coordinates
of the two points. In the specific example above, the numeri-
cal values for the two energies do have a sizeable difference.
However, even in a case like this, where the spiral’s winding is
not very high, the gravitational potential can be robustly and ac-
curately inferred by considering the spiral curve over a longer
segment, for example over half a period. The shape of the spi-
ral will be strongly constrained by the gravitational potential and
from the fact that ϕ̃(Ez) is a smooth function.

In order to illustrate how the shape of the spiral can change
when varying the gravitational potential, we show three different
examples in Fig. 2. In the upper panel of this figure, the gravi-
tational potentials are illustrated in terms of their vertical force
per mass (Kz = −∂Φ/∂z). The gravitational potential of spiral A
corresponds to a matter density distribution that is equal to

ρA(z) =
0.05 M�pc−3

cosh2
(

z
200 pc

) +
0.02 M�pc−3

cosh2
(

z
400 pc

) +
0.02 M�pc−3

cosh2
(

z
800 pc

) .
(11)

The matter density distribution of spiral B is identical to that
of spiral A in terms of shape, but multiplied by a factor of 1.5.
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Fig. 2. Three phase-space spirals (labelled A, B, and C), inhabiting
three different gravitational potentials. The top panel shows the vertical
force per mass (Kz = −∂Φ/∂z) as a function of height for the respective
gravitational potentials. The bottom panel shows the three spirals in the
(z,w)-plane, where their winding time (t) and initial angle (ϕ̃0) are cho-
sen such that the spirals have the same phase (ϕ̃) and phase derivative
(∂ϕ̃/∂zmax) when their vertical energy is equal to Ez = Φ(800 pc).

Finally, the matter density distribution of spiral C is equal to

ρC(z) =
0.10 M�pc−3

cosh2
(

z
100 pc

) +
0.02 M�pc−3

cosh2
(

z
400 pc

) +
0.02 M�pc−3

cosh2
(

z
800 pc

) .
(12)

This is identical to that of spiral A for z & 400 pc (also in terms
of the gravitation force) but differs at lower heights.

The three spirals, shown in the bottom panel of Fig. 2, are
individually normalised in terms of t and ϕ̃0 to have the same
winding behaviour for Ez = Φ(800 pc). This makes, in some
sense, the three spirals maximally similar to each other. Despite
this, the three spirals can be differentiated from each other, as a
result of inhabiting different gravitational potentials. In terms of
shape, spirals A and B are identical; they differ solely by a fac-
tor of

√
1.5 in their velocity coordinate w. Spirals A and C are

practically identical when z & 400 pc and Ez & Φ(400 pc). They
differ slightly when z ' 0 and Ez & Φ(400 pc), due to spiral C in-
habiting a potential that is slightly steeper close to the mid-plane.
In the innermost region of the plot, where Ez . Φ(400 pc), spiral
C differs from spiral A also in terms of its winding behaviour,

because the oscillation period differs significantly for low zmax
and Ez.

The examples presented above illustrate the general princi-
ples of how the gravitational potential affects the shape of the
phase-space spiral, and in effect how the latter can be used to
infer the former. The total amount of winding is affected by the
total mass of the disk as well as t, so in this sense these quantities
are degenerate. However, as we see in the comparison between
spiral A and B, for which the total mass differs by a factor 1.5
and t differs by 1/

√
1.5, the shape of the spirals are dramatically

different despite having the same amount of winding in terms of
∂ϕ̃/∂zmax. By comparing spirals A and C, we also see that the
spiral shape in a certain segment, which we can define by some
range in Ez, is sensitive to the gravitational potential at the as-
sociated energy. For example, the gravitational potential close to
the mid-plane affects the spiral’s winding behaviour especially
at low vertical energies.

2.4. Complete spiral model

In this work, we fit an analytical phase-space spiral to data com-
ing from a one-dimensional simulation of the Galactic disk. In
our complete analytical model of inference, the phase-space spi-
ral was not modelled as the idealised one-dimensional structure
discussed in Sect. 2.3, but instead as a continuous function with
respect to (z,w). This full model is described here.

The free parameters of our model of inference are listed in
Table 1. The free parameters, encapsulated in the quantityΨ, are
split into three subgroups that determine the bulk phase-space
density (Ψbulk), the relative phase-space density perturbation of
the spiral (Ψspiral), and the current phase-space position of the
Sun (Ψ�). These model components are described in detail be-
low.

The spiral is modelled as a relative perturbation with respect
to a bulk tracer stellar density. We model the bulk density in
the (z,w)-plane as a sum of bivariate Gaussians labelled by the
index k, which are all centred on (z,w) = (0, 0) and have diagonal
covariance matrices, according to

B(z,w |Ψbulk) =
∑

k

akN

( [
z
w

]
,

[
σ2

z,k 0
0 σ2

w,k

] )
, (13)

where Ψbulk includes the Gaussian weights ak, and dispersions
σz,k and σw,k. The function

N(p,Σ) ≡
exp

(
−

1
2

p>Σ−1
p p

)
2π

√
|Σp|

, (14)

is a bivariate Gaussian.
The bulk stellar density is the quantity that is usually used in

order to perform dynamical mass measurements, under the as-
sumption that this distribution is in a steady state. In the method
used in this work, the bulk is merely a background that needs
to be subtracted in order to extract the spiral structure. The bulk
density, as expressed in Eq. (14), is not required to fulfil the sta-
tionary Boltzmann equation or Jeans equations; it is completely
free to vary in terms of its free parameters (meaning weights
and dispersions), regardless of the gravitational potential. In this
manner, the gravitational potential is completely uninformed and
independent of the bulk stellar density, and will be inferred only
from the shape of the spiral.
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Table 1. Free parameters in our analytical model of inference. These parameters are split into three groups, Ψ = {Ψbulk,Ψspiral,Ψ�}, corresponding
to the parameters that determine the bulk phase-space density, the relative phase-space density perturbation of the spiral, and the solar phase-space
parameters. The total number of free parameters is equal to 9 + 3K, where K is the number of Gaussian components in the bulk stellar density.

Ψbulk Bulk phase-space density parameters

ak Weights of the bulk density Gaussian mixture model

σz,k, σw,k Dispersions of the bulk density Gaussian mixture model

Ψspiral Spiral phase-space density parameters

ρh={100,200,400,800} Matter density parameters that determine the gravitational potential

t Time since the perturbation was produced

ϕ̃0 Initial angle of the perturbation

α, β Amplitudes of the anti-symmetric and symmetric spiral components

Ψ� Solar phase-space parameters

Z� Height of the Sun above the Galactic plane

W� Vertical velocity of the Sun in the Galactic disk rest frame

The phase-space spiral was modelled as a sum of an anti-
symmetric and a symmetric component, corresponding to a sin-
gle or double armed spiral, parametrised by amplitudes α and β
according to

S (z,w |Ψspiral) = α cos
[
ϕ(z,w | ρh) − ϕ̃(z,w, ρh, t, ϕ̃0)

]
+

β cos
{
2
[
ϕ(z,w | ρh) − ϕ̃(z,w, ρh, t, ϕ̃0)

]}
. (15)

Here, ϕ(z,w | ρh) is the intrinsic phase of the (z,w) coordinates
according to Eq. (5), although here written with an explicit de-
pendence on the parameters that determine the gravitational po-
tential; and ϕ̃(z,w,Φ, t, ϕ̃0) is the phase associated with the spiral
according to Eq. (6). Because the spiral density is a relative den-
sity, the quantities α and β are unitless, and constrained to fulfil
that (α, β) > 0 and α + β < 1. The parameters ρh correspond
to mid-plane matter densities of four different mass components,
giving a total matter density of

ρ(z) =
∑

h

ρh cosh−2
(

z
h pc

)
, (16)

where h takes values of {100, 200, 400, 800}. Via the Poisson
equation, see Eq. (8), this gives rise to a gravitational potential
equal to

Φ(z | ρh) =
∑

h

4πGρh

(h pc)2 log
[

cosh
(

z
h pc

)]
. (17)

In the limit of low vertical energies, the self-gravity of the
phase-space spiral is not negligible, and the spiral structure in
this innermost region does not form. For this reason, we impose a
smooth inner boundary to the relative spiral density, correspond-
ing to Ez = Φ(400 pc), within which there is no spiral. This inner
boundary is defined by

m(z,w | ρh) = sigm
[

Ez(z,w | ρh) − Φ(400 pc | ρh)
Φ(400 pc | ρh) − Φ(380 pc | ρh)

]
, (18)

where

sigm(x) ≡
1

1 + exp(−x)
(19)

is a sigmoid function that outputs values in range (0, 1).
The total phase-space density of our analytical model is

equal to

f (z,w |Ψbulk,Ψspiral) = B(z,w |Ψbulk)

×
[
1 + m(z,w | ρh) S (z,w |Ψspiral)

]
, (20)

where Ψbulk = {ak, σz,k, σw,k} is the subset of parameters that
affect the bulk density, and Ψspiral = {ρh, t, ϕ̃0, α, β} are the pa-
rameters that determine the relative phase-space perturbation of
the spiral.

2.5. Data histogram and mask function

In the model of inference, the bulk and spiral densities are fitted
to data, where the data has the form of a two-dimensional his-
togram in the (Z,W)-plane of the solar frame coordinates. This
histogram is the number count of observed stars in bins of size
(20 pc)× (1 km s−1), written di, j where (i, j) labels the respective
bins.

The analytical model is fitted to a circular area of this two-
dimensional histogram, defined by a mask function in the (Z,W)-
plane with smooth outer boundaries, roughly corresponding to a
constant Ez. The mask function is defined

M(Z,W) = sigm
{

10
[(

Z
Zlim.

)2

+

(
W

Wlim.

)2

− 1
]}
, (21)

where sigm is the sigmoid function defined in Eq. (19). The mask
function is visible in Fig. 3.

The reason for applying such a mask has to do with the
outer boundaries for which the analytical spiral model can be
assumed to be a valid description. In the high energy limit, the
number density of stars decreases and the spiral becomes less
pronounced. Furthermore, there are additional issues that could
cause systematic errors in the case of the actual Milky Way. The
simplifying assumption of only considering the vertical dimen-
sion will be problematic especially for stars with high vertical
energies, which have more complex dynamical behaviour.
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Fig. 3. Mask function M(Z,W) in the (Z,W)-plane, with boundary val-
ues Zlim. = 700 pc and Wlim. = 40 km s−1. See Eq. (21) for details.

2.6. Likelihood and fitting procedure

The likelihood is given by the Poisson count comparison of the
model and data of the respective bins, in the circular area defined
by the mask function. The logarithm of the likelihood is equal to

lnL(di, j |Ψ) =

−
∑
i, j

M(Zi,W j)
[di, j − f (Zi + Z�,W j + W�,Ψ)]2

2 f (Zi + Z�,W j + W�,Ψ)

+ {constant term}. (22)

We are seeking to minimise this likelihood in our fit, allowing us
to neglect any constant term in the above expression.

Our model was fitted in two separate steps. In the first step
we performed a joint fit of the bulk density and solar parameters
to the data, while disregarding the spiral; equivalently stated, we
minimised Eq. (22) with respect to Ψbulk and Ψ�, while (α, β) =
0 remained fixed. In a second step, the bulk density and solar
parameters remained fixed, while fitting the relative density of
the phase-space spiral; in other words, we minimised Eq. (22)
with respect to Ψspiral, while Ψbulk and Ψ� remained fixed. Only
in the second step of this process, where the spiral is fitted, does
the gravitational potential vary and affect the likelihood.

In order to avoid any fitting artefacts with regards to the
boundary of the mask function, defined in Eq. (21), the two steps
of the fitting procedure uses slightly different masks. For the first
step, where the bulk density is fitted, we use a larger mask with
Zlim. = 800 pc and Wlim. = 44 km s−1. For the second step, where
the relative stellar density of the spiral is fitted, we use a smaller
mask with Zlim. = 700 pc and Wlim. = 40 km s−1.

2.7. Model implementation

The first step of the minimisation procedure is straight for-
ward and computationally fast, as it only requires fitting a two-
dimensional Gaussian mixture model to data. However, the sec-
ond step, where the spiral is fitted, is significantly more expen-
sive. Calculating the spiral likelihood of Eq. (22) requires cal-
culating the intrinsic angle ϕ(Zi,W j) as a numerical integral for

each bin of the two-dimensional histogram, iterating over (i, j).
This is done for each individual step of the minimisation algo-
rithm.

In order to make the algorithm computationally tractable, the
method was implemented in TensorFlow, allowing for efficient
minimisation using the Adam optimiser (Kingma & Ba 2014).
Minimising the spiral likelihood function is still computationally
demanding, and requires several hundred CPU hours.

3. Simulations

In this section we describe the simulations on which we
have tested our model of inference. The simulations are one-
dimensional, constrained to the (z,w)-plane. The phase-space
distribution of the simulations were initiated in a steady state
and then perturbed by an external force, creating phase-space
over- and under-densities that wind into a spiral with time. We
tested our method on two simulations, labelled Simulation A and
Simulation B.

The simulations were run with 105 equally massive particles,
labelled by the index i, representing stars and gas of the Galac-
tic disk. Because the simulations are only in one dimension, the
particles can be thought of as sheets of mass extending in the
directions parallel to the Galactic disk. In the simulations, the
gravitational acceleration is equal to

Kz(z) =
dw
dt

= −4πG
[
ρDM z +

∑
i

m sign(z − zi)
]
, (23)

where ρDM is a fixed constant representing a constant dark matter
density, m is the surface mass per particle (in units M�pc−2), zi
is the height of the ith particle, and

sign(x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0.

(24)

3.1. Initial state

The simulation particles were drawn from three separate distri-
butions, representing stars of the thin and thick disk, as well as
a component of cold gas. The initial configuration of particles
was in a steady state, and the three respective components were
assumed to be isothermal. The component of halo dark matter
was not represented by dynamical particles in the simulation, but
by the fixed constant ρDM. The three dynamical components are
defined by their respective velocity dispersions (σw,thin, σw,thick,
σw,gas) and mid-plane matter densities (ρ0,thin, ρ0,thick, ρ0,gas).

Given these specifications, the matter density of the respec-
tive components, here labelled by x = {thin, thick, gas}, follow
the relation

ρ(z)x = ρ0,x exp
[
−

Φ(z)
σ2

w,x

]
, (25)

where Φ(z) is found via the Poisson equation of Eq. (8) and the
total matter density, which is equal to

ρ(z) = ρ(z)thin + ρ(z)thick + ρ(z)gas + ρDM. (26)

By solving this system of equations, assuming boundary con-
ditions Φ(0 pc) = 0 km2 s−2 and ∂Φ/∂z|z=0 pc = 0 km s−2, the
phase-space distributions of the respective components are fully
determined.
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Fig. 4. Example of the matter density distributions from which the par-
ticles of our one-dimensional simulations are drawn. In this plot, the
distribution correspond to that of Simulation A; see Sect. 3 and Table 2
for details.

The 105 particles of our simulations were randomly drawn
realisations of the stellar and gas steady state phase-space dis-
tributions, where the surface mass per particle is equal to 10−5

times the total surface mass of the gas and stellar components.
When generating the data, meaning the two-dimensional his-
togram di, j representing observed stars, only the particles drawn
from the thin and thick stellar disk components were used, and
particles belonging to the gas component are ignored because
they would not be observed by the Gaia survey.

An example of the initial configuration of the matter den-
sity distributions is shown in Fig. 4. The values for ρDM, σw,x,
and ρ0,x correspond to those of simulation A, which are listed in
Table 2. The initial matter density distributions are mirror sym-
metric with respect to the mid-plane (z→ −z).

3.2. Perturbation

After the initial set-up, we perturbed the simulation by applying
an external force for a limited amount of time. The external force
that created the perturbation is of the form

Kz,sat.(t, z) = −4πG Σ exp
(
−

t2

2σ2
t

)
tanh

[
z − (z0,sat. + wsat.t)

H

]
,

(27)

where Σ is a surface mass, σt corresponds to the duration of the
external force, H is a softening length, z0,sat. is the position of the
satellite at time t = 0, and wsat. is its constant vertical velocity.
The perturbation is active for a range in time of (−2.5σt, 2.5σt).
The time t is defined with respect to the instance when this ex-
ternal force was maximal (t = 0 yr).

This perturbation can be thought of as a massive satellite that
passes through the Galactic disk at some angle of incidence. Due
to its velocity parallel to the disk, it affects a disk region only for
a limited amount of time. The softening length would correspond
to the physical scale of the satellite.

We also added a scattering component, written si, unique for
each separate particle, randomly distributed according to a Gaus-
sian centred on unity and with a standard deviation of 1/2. The
particles are affected to different extents by the external force,

according to

Kz,sat.,i(t, z) = siKz,sat.(t, z). (28)

If such a scattering component is not included, the perturbation
produces definite holes in the (z,w)-plane, and creates a spiral
structure that is too clearly defined. The scattering component
was introduced in order to create a more smooth distribution of
over- and under-densities, similar to the actual phase-space spiral
of the Milky Way.

The external force we used in this work was not meant to
represent a fully realistic perturbation due to a passing satellite
or other source; a fully realistic perturbation of the disk can only
be simulated in a complete six-dimensional phase-space. Rather,
the aim of the simulations was to create phase-space spirals that
are qualitatively similar to the actual phase-space spiral of the
Milky Way. Furthermore, the relatively slow speed of the passing
satellite is chosen in order to achieve a perturbation that affects
stars at lower vertical energies, and also produces a perturbation
that is asymmetrical (see Widrow et al. 2014 for how a satellite’s
properties are correlated with the resulting disk perturbation).
This gives rise to a spiral which is similar to that of the Milky
Way in the following sense: while the spiral structure is not at all
visible close to the origin of the (z,w)-plane, outside this inner-
most region the relative density of the spiral structure is close to
constant in amplitude.

The main difficulty we had in reproducing the Milky Way
phase-space spiral in the (z,w)-plane is related to its asymmetry.
The actual phase-space spiral of the Milky Way has a single arm.
Despite our efforts, we could only produce double armed spirals,
albeit with some asymmetry in terms of the relative amplitudes
of the two arms. Even though the applied external force of our
simulations was asymmetrical and produced clearly asymmetri-
cal initial perturbations, the subsequent evolution of the pertur-
bations evolved into double armed spirals. Perhaps a less ide-
alised, more noisy environment is enough to quench the forma-
tion of the secondary arm, possibly as a consequence of occupy-
ing a six-dimensional phase-space or other effects of dynamical
diffusion. Single armed spirals may also be achievable through
a more complex initial perturbation, for example by multiple
passages of a satellite. Even though our simulations did not re-
produce the single armed spiral structure, we are still confident
that this test on mock data is valuable as a proof of concept and
demonstration of a completely novel method for inferring the
Galactic gravitational potential.

3.3. Simulations A and B

In this work, we ran two separate simulations, referred to as sim-
ulation A and simulation B, on which we tested our analytical
model. The parameters of these two simulations are listed in Ta-
ble 2.

In terms of the initial configuration of simulations A and B,
their respective matter density distributions differ, both in terms
of stars and gas. For the perturbation, simulation A and B differ
in all parameters. The external force applied to simulation B was
weaker (mainly due to a smaller surface mass Σ), and produced
a spiral with a smaller relative amplitude.

For simplicity, we set Z� = 0 pc and W� = 0 km s−1 when
producing the two-dimensional data histogram di, j. In reality, the
Sun’s vertical position and velocity are different from zero, but
this would be trivial to correct for as these values are known
to sufficient precision (see for example Gaia Collaboration et al.
2020b) compared to the resolution at which we resolve the phase
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space spiral in our method. In our method of inference, the pa-
rameters Z� and W� are still free parameters which were fitted in
the first step of our minimisation procedure.

Table 2. Parameters of our simulations A and B. The top seven parame-
ters in this list determine the initial steady state configuration, while the
bottom five parameters determine the properties of the perturbation.

Parameter

Simulation
A B

ρ0,thin (M�pc−3) 0.04 0.02

ρ0,thick (M�pc−3) 0.01 0.02

ρ0,gas (M�pc−3) 0.05 0.04

ρDM (M�pc−3) 0.01 0.01

σw,thin (km s−1) 16 16

σw,thick (km s−1) 24 24

σw,gas (km s−1) 8 10

Σ (M�pc−2) 6 4

σt (Myr) 80 100

H (pc) 50 80

z0,sat. (pc) 600 −400

wsat. (km s−1) −50 −70

4. Results

In this section, we present the results of simulations A and B.
Our method was applied to each simulation at two separate
times. For simulation A, these times are tA,1 = 400 Myr and
tA,2 = 600 Myr; for simulation B, they are tB,1 = 400 Myr and
tB,2 = 500 Myr. For these instances in time, the spiral winding is
roughly one complete period in the spiral region of our analytical
model, where the outer boundary is defined by the mask function
M(Z,W) and the inner boundary is defined by the model’s lower
energy bound m(z,w |Ψspiral), see Eqs. (21) and (18). For the bulk
density distribution B(z,w, |Ψbulk), which is minimised in the
first step of the fitting procedure, we used a Gaussian mixture
model consisting of K = 6 Gaussians; fitting a higher number
of Gaussians did not significantly improve the maximum likeli-
hood.

The results of the four different cases are presented in
Figs. 5–8. The figures each contain four panels, showing the
true and inferred gravitational potential, a two-dimensional his-
togram of the data, the spiral extracted directly from the data, and
the best fit spiral of our analytical model. The spiral as extracted
from the data, seen in panel (c) is defined like

M(Zi,W j) ×
[ di, j − B(Zi + Z�,W j + W� |Ψbulk)

B(Zi + Z�,W j + W� |Ψbulk)

]
. (29)

In panel (d), the spiral of our analytical model also includes the
lower energy bound of Eq. (18), according to

M(Zi,W j) × m(Zi + Z�,W j + W� | ρh)
× S (Zi + Z�,W j + W� |Ψspiral). (30)

We only show our inferred results in terms of the best
fit, meaning the maximised likelihood. Running the minimisa-
tion algorithm is already very computationally intensive (see
Sect. 2.7 for details) and computing a full Markov chain Monte
Carlo would be very costly but without much return on invest-
ment, because our results are dominated by systematic rather
than statistical uncertainties; because of the high number of stars
and the simplicity of our analytical model, the statistical uncer-
tainty is very small (below percent level). When applying our
model to the real phase-space spiral of the Milky Way, the to-
tal amount of available stars will be even higher, and there will
be plenty of other potential sources of systematic bias; in other
words, applying this method to real data will most probably only
make systematic effects dominate even more.

The inferred potential at greater heights (|z| & 600 pc) is less
robustly inferred, and in fact largely an extrapolation with re-
gards to its shape at smaller heights. The main reason for this is
that only a very small portion of the two-dimensional histogram,
after applying the mask of Eq. (21), covers such heights. There
seems to be a slight bias towards a steeper gravitational poten-
tial in the regime of larger |z|. In terms of accuracy, the most
robustly inferred quantity is the gravitational potential value at
heights around 400 to 500 pc, for which the relative error is only
a few percent (strictly less than 5 %). The precise shape of the
gravitational potential close to the Galactic mid-plane is less ro-
bustly inferred; as was demonstrated in Sect. 2.3 and Fig. 1, the
shape of the gravitational potential at low heights gives rise to
quite small differences in the spiral’s shape.

In terms of the time that has passed since the perturbation
(the parameter t), the best fit results are tA,1 = 432 Myr, tA,2 =
506 Myr, tB,1 = 334 Myr, and tB,2 = 405 Myr. The true values are
400 Myr, 600 Myr, 400 Myr, and 500 Myr, respectively, where
the true time is defined in terms of when the external force of
Eq. (27) was maximal. However, the force is actually active for
roughly 100 Myr both before and after t = 0 Myr. Hence, we
did not expect the inferred value for t to be accurate within such
time frames.

In order to demonstrate the limits of our model of inference,
we also show results for Simulation B at times tB,3 = 600 Myr
and tB,4 = 700 Myr in Appendix A. At these times, the spiral
arms can no longer be seen by eye as clear continuous struc-
tures, and our method is starting to lose accuracy in terms of the
inferred gravitational potential (the relative error is as high as
10 % for the inferred potential at |z| = 400 pc). We also ran other
similar simulations, for example with more complicated initial
stellar phase-space distributions, for which we obtained similar
results.

5. Discussion

When applying our method of inference to one-dimensional sim-
ulations, we were able to infer the gravitational potential to
high accuracy. Our method extracts information from the time-
varying structure of a phase-space spiral; this is a novel ap-
proach, constituting a break from traditional methods that are
based on the assumption of a steady state. For this reason, our
method is also complementary to such traditional methods, and
likely subject to different sources of systematic bias.

While our method is accurate in terms of one-dimensional
simulations, the actual Milky Way is significantly more complex.
To begin with, stars in the Galactic disk do not only oscillate in
the vertical direction, but also move in the radial direction as they
orbit the Galactic centre. Indeed, the phase-space spiral of the
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Fig. 5. Data and results of simulation A at time tA,1 = 400 Myr. The four panels show: (a) the true and inferred gravitational potentials; (b) the
two-dimensional data histogram di, j in the (Z,W)-plane; (c) the phase-space spiral as extracted from the data, see Eq. (29) for the precise definition,
and smoothed to an effective bin size of (40 pc) × (2 km s−1); (d) the best fit spiral density S (Z + Z�,W + W� |Ψspiral), as defined in Eq. (30). In
panel (a), the height is plotted in range Z ∈ [−700, 700] pc, corresponding to the outer limit of the mask function; in all other panels, the range is
Z ∈ [−900, 900] pc. In panel (c) and (d), the outer boundary corresponds to that of the mask function of Eq. (21); in panel (d), the inner boundary
corresponds to the lower limit in vertical energy for the spiral model, according to Eq. (18).

Milky Way has a different form depending on cuts in angular mo-
mentum or Galactocentric radius (see for example figure 14 in
Laporte et al. 2019, as well as Khanna et al. 2019). When apply-
ing our method to Gaia data for the first time, we plan to select
stars of the solar neighbourhood that have approximately circular
orbits, for which the assumptions of our model are most likely to
be valid. It would be interesting, although probably quite compli-
cated, to see what kind of information about the global structure
of the Milky Way could be extracted from the shape of the spiral
in different bins of Galactic angular momentum. Ultimately, we
would want to test and refine our method using a high-resolution
simulation of a galaxy in three spatial dimensions. Up until now,
simulations of Milky Way-like systems (such as Laporte et al.
2018 and Bland-Hawthorn & Tepper-Garcia 2020) have not had
sufficient resolution to produce well resolved phase-space spi-

rals in stellar density in the (z,w)-plane. To do so requires billion
particle simulations, which have only recently become feasible
(Asano et al. 2020, Hunt et al. in preparation).

A useful test in terms of systematic uncertainties would be
to perform separate analyses of different segments of the phase-
space spiral. The assumptions of our analytical model are prob-
ably only valid over a certain range in vertical energy; fitting the
spiral over a large area in the z,w-plane would give a small statis-
tical uncertainty, but potentially at the price of large systematic
errors. It would be possible, at least to some extent, to quantify
systematic errors by comparing the results of the smaller, sepa-
rate spiral segments. Another test in a similar vein would be to
abandon the form of the function ϕ̃(t, Ez) as defined in Eq. (6),
which might not be completely accurate due to effects of for ex-
ample self-gravity; instead, we could simply assume that the spi-
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Fig. 6. Same as Fig. 5, but for simulation A at time tA,2 = 600 Myr.

ral angle ϕ̃ is a smooth function with respect to Ez and model it
as a Gaussian process.

Observational uncertainties are probably not a significant
factor when applying this method to Gaia data and our own
Galaxy. The most significant observational uncertainties are as-
sociated with the parallax measurements. With Gaia EDR3,
those uncertainties are of the order of 0.02–0.03 mas for stars
with absolute G-band magnitudes smaller than 15 (Lindegren
et al. 2020). Within kilo-parsec distance, this corresponds to a
relative uncertainty of at most a few percent (meaning at most
a few tens of parsec in distance). The uncertainties with respect
to velocities is typically only a few hundred meters per second
(Katz et al. 2018). Neither distance or velocity related uncer-
tainties should be significant issues given the scale of the phase-
space spiral and the high amount of available statistics.

Observing the phase-space spiral using Gaia requires ra-
dial velocity measurements, which are not available for all stars.
Cleaning the data to exclude stars with missing radial velocities
introduces a significant selection effect. However, selection ef-
fects should not be a hindrance to our method, at least not as

long as the selection function is fairly smooth. What is crucial is
that the shape of the phase-space spiral is extracted with accu-
racy; any selection effects that varies smoothly with distance will
be accounted for when subtracting the bulk density component.

6. Conclusion

In this work, we have developed a method for inferring the grav-
itational potential of the Galactic disk from the shape of a phase-
space spiral in the (z,w)-plane. Our analytical model of the spi-
ral, which is fitted to data, is based on a few simplifying assump-
tions, such as neglecting the self-gravity of the spiral and assum-
ing that it evolves in a static potential. We tested our method on
one-dimensional simulations (which do not adhere to the model
assumptions) and could recover the gravitational potential with
high accuracy. In cases where the phase-space spiral could be
seen as a smooth continuous structure in the modelled region of
the (z,w)-plane (similar to the actual spiral of the Milky Way),
the relative error for the inferred potential at heights |z| ' 500 pc
was as small as a few percent; poor accuracy, meaning relative
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Fig. 7. Same as Fig. 5, but for simulation B at time tB,1 = 400 Myr.

errors of 6–10 %, was obtained only in cases where the phase-
space spiral lacked these characteristics.

This article is the first in a series, in which we plan to apply
our method to the real Milky Way phase-space spiral, as well
as test and refine our method using more complex Galaxy sim-
ulations. This is a step in the direction of modelling the time-
dependent dynamics of the Milky Way, and demonstrates that a
time-varying structure is not necessarily an obstacle to dynami-
cal mass measurements, but can in fact be an asset from which
it is possible to extract useful information. The method in this
paper completely disregards the bulk density distribution, and is
therefore complementary to traditional methods for which the
bulk is the key quantity. Eventually, we would like to combine
these separate methods, and infer the gravitational potential of
the Galactic disk using the joint information of the spiral and the
bulk phase-space density distribution.
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Appendix A: Further results for Simulation B

In this section we present some further results for Simulation B,
at times tB,3 = 600 Myr and tB,4 = 700 Myr. We do so in order to
demonstrate the limits of our method. Simulation B was subject
to a relatively weak perturbation, and the resulting spiral has a
low amplitude (roughly 10 % in terms of relative stellar number
density, compared to roughly 20 % for Simulation A). With time
and further winding, the spiral structure becomes all the more
phase mixed and increasingly hard to detect, and will eventually
disappear completely. In Figs. A.1 and A.2, we show results in
the interim, where the spiral begins to be more difficult to see.

At these later times, when the spiral structure is less pro-
nounced, our method loses accuracy. In terms of the gravitational
potential at heights in range 400 to 500 pc, the relative error is
roughly 6 % for tB,3 and 10 % for tB,4. The inferred time since the
perturbation are tB,3 = 451 Myr and tB,4 = 725 Myr (true values
are 600 Myr and 700 Myr).
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Fig. A.1. Same as Fig. 5, but for simulation B at time tB,3 = 600 Myr.
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Fig. A.2. Same as Fig. 5, but for simulation B at time tB,4 = 700 Myr.
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